

Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2014

DELIVERABLE Work Package 6

D6.1 Interpret and evaluate consumer food choice through data mining and related measured/analytical approaches across countries (Denmark, France, Greece, UK), key stages and organisational settings (universities and workplaces)

Lead Contractor for the D6.1
University of Copenhagen

Final Report

June 2018

ACKNOWLEDGEMENT

The authors gratefully acknowledge the European Community's financial support under the RISE Programme for Support for training and career development of researchers (Marie Curie).

DISCLAIMER

The views expressed in this publication are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of the information. The information in this document is provided as it is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

Investigators (FoodSMART Team)

- Denmark (DK) WP Leader: Armando Pérez-Cueto, Yang Chen
- France (FR): Agnès Giboreau, Laure Saulais
- Greece (GR): Ioannis Mavridis
- United Kingdom (UK): Heather Hartwell, Jeff Bray
- Austria (AT): Manfred Ronge

Partners in alphabetic order

- Bournemouth University (Bournemouth UK)
- Institut Paul Bocuse (Lyon FR)
- Ronge & Partner GmbH (Badan AT)
- University of Copenhagen (Copenhagen DK)
- University of Macedonia (Thessaloniki GR)

Table of Contents

PREFACE	5
Executive summary	6
INTRODUCTION	8
MATERIALS AND METHODS	9
RESULTS	12
Discussion	20
CONCLUSIONS	21
REFERENCES	22
Appendix 1	22
Appendix 2	28
Appendix 3	34
Appendix 4	55

PREFACE

The research reported here was supported by Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) programme which aims to promote international and inter-sector collaboration through research and innovation staff exchanges and advance science and the development of innovation through sharing knowledge and ideas from research to market and vice versa - FoodSMART Project ID: 643999. The objective of this project is to develop an innovative technical (ICT) menu solution that enables informed consumer food choice while dining out that takes into account individual characteristics, product cues as well as environmental cues. This report disseminates Work Package 6 - Field Study (KU). The objective of WP6 is to conduct a field study across age groups and organisational settings (i.e. universities and workplace canteens) in Denmark, France, Greece and the UK so as to obtain consumer insights through data mining and relevant measured/analytical approaches as well as synthesising and benchmarking the attributes of a successful human-smartphone/tablet interface in preparation for commercialisation. The content of this report refers specifically to the data mining and analytics aspect of the work package. University of Copenhagen (KU) coordinated the work, which is supported by Bournemouth University, Institut Paul Bocuse, Ronge & Partner GmbH and University of Macedonia. Correspondence should be addressed to Federico J. Armando Perez-Cueto, University of Copenhagen, Department of Food Science, Rolighedsvej 26, 1958, Frederiksberg C, Denmark. Tel. +45 60 74 33 90. Email: apce@food.ku.dk.

Copenhagen, June 2018

Executive summary

After the identification of consumers preferences and needs for information and decision making in canteen situations by the work conducted in WP2. The FoodSMART app has been developed (WP4), and prototype tested in the field at IPB (WP5). The next critical step is to evaluate its usability by canteen consumers in Denmark, France, Greece and the UK. A study was designed to compare and assess consumer acceptance and potential use of the FoodSMART app among respondents who have never used the FoodSMART app (Control Group) with those having used the app (Test Group), therefore further analytical investigations on the consumer data collected in both control and test situations can be conducted to compare consumer food choice cross four countries, key stages and organization settings. A total number of 1031 adults from Denmark, France, Greece and the UK participated in the study. The study was conducted in two organisation settings (university canteen and workplace canteen) in four countries. The two questionnaires applied during the study consist of sociodemographic characteristics; consumer evaluation of the app; consumer's perspective on the features of meal content and meal information; personal values (health status, attitudes towards food and related ethical issues), canteen usage frequencies and diet type. Both the control and test groups completed the survey, where the test group also experienced the FoodSMART app in a reallife setting. A ranking of specific attributes of app interface across groups and countries was produced through Principle Component Analysis (PCA) and a subsequent Confirmatory Factor Analysis (CFA) by Structural Equation Modelling (SEM) and developed to mine the survey data collected in control and test situations across countries and organization settings and explore the relationships between factors that influence consumers' food choices in the canteen.

The overall results obtained from mining the data of all the participants from four countries reveal the top indicator for each corresponding factors (app functions and interface, canteen food qualities, information provision and food-related ethical issues). The propriety for app functions and interface is that the app should be easy to use, while that of the food qualities is food sustainability and freshness. The top indicators for information provision are calorie information and chef recommendations. However, the rest of the indicators in the group are relatively equally important. For food-related ethical issues, global warming and sustainability concern consumers the most. The results for country and organisation setting comparisons show that consumers in all four countries seem to share the similar trait of valuing canteen food qualities the most, especially for food sustainability, freshness, hygiene and safety. The consumer preferences for the rest of the factor vary from country to country. No significant conclusions can be drawn regarding differences and similarities in two organisational settings (workplace and university canteen) from the results.

Information regarding the critical stages of food preparation was not captured via the app and the questionnaire, which led to a minor deviation from the planned content.

INTRODUCTION

Since the introduction of the internet to people's homes and the rapid rise in the number of people owning internet-enabled smartphones and tablets, there has been increased interest in using this technology as a method of delivering behavioural change such as dietary behavioural change (Webb et al. 2010). This technology is mainly experimental and has shown both promise and potential pitfalls (Murray 2012), but it seems inevitable that with the continuing proliferation of technology in our everyday lives, tablets and smartphones will form an important part of the clinical behavioural research for the foreseeable future. The potential for using phones and tablets for behavioural change is significant. Devices such as smartphones and tablets have become rapidly integrated into everyday life, and the latest figures in the UK indicate that more than 90% of 16-24-year-olds own a smartphone (Ofcom 2015). With such high levels of smartphone use, especially among the young, and the potential for automated, instant and free tracking of behaviours as opposed to other expensive interventions, it is clear why the smartphone and tablets have proven to be such a popular means of applying behavioural interventions in the scientific literature in recent years. Smartphone and tablet interventions are increasingly popular due to the increase in coverage and have been proven to be extremely effective in health behaviour changes in various areas (Muessig et al. 2015; Donker et al. 2013; Ehrenreich et al. 2011).

A study has shown that the fat and calorie intake are significantly higher when dining out comparing to eating at home, which can potentially lead to a rise in the prevalence of obesity (Bohm and Quartuccio, 2008). The use of smartphones and tablet technologies such as developing of an innovative technical (ICT) menu solution that enables informed consumer choice when eating out that takes into account different individual characteristics, as well as product and environmental specific cues, can be a potential method of reducing the economic and sociable costs of unhealthy food choices. This also provides further insights into potential commercialisation opportunity (Lowe et al., 2013).

Based on the findings from the previous work packages and other relevant evidence, the prototype of an ICT menu solution (FoodSMART) was developed. The WP6 aims to investigate whether the current prototype is truly effective by testing it in the field across age groups and organisational settings (i.e. universities and workplace canteens) in Denmark, France, Greece and the UK. The results of the WP6 provide interpretation of consumer food choice through data mining and related measured/analytical approaches across countries and organisational settings (universities and workplaces) as well as benchmarks of attributes for potential commercialization in the future that can be a starting point of guiding consumers into healthier and more sustainable food choices in canteens through mobile technologies.

MATERIALS AND METHODS

A study was developed to address the target questions in WP6 by comparing respondents who have never used the FoodSMART app with those having used the app. The primary aim of the study is to evaluate consumer acceptance and potential use of the app in the field in Denmark, France, Greece and the UK. A questionnaire was designed and then introduced into the study to capture consumer responses in both control and test groups. The intention of using a control group is to present the app concept in a theoretical way (or with a video) and thereafter ask what aspects of the app would be relevant to the participants for further development via questionnaire. In contrast, consumers were able to use the app in real-time during test situations. The survey evaluates whether consumers find it useful and express their intention to use the app. After that, data collected from the study were analysed to obtain consumer insights through data mining and relevant measured/analytical approaches.

Questionnaire Design

The questionnaire was first conceptualised based on the findings from WP2 that identified consumers' preferences and needs for information and decision making in canteen situations. After which, it was further modified based on expert opinions as well as in-depth interviews with consumers to form the initial structures and core questions to assess the target objectives. It then went through a pre-test phase to evaluate its viability and reliability for further revisions. The final questionnaire was formalised to investigate consumer behaviour with the following questions to target specific consumer insights (Appendix 1 & 2):

- Questions 1-11 are a consumer evaluation of the app after use.
- Questions 12 15 are basic sociodemographic information plus subjective health statement.
- Questions 16 20 are the frequency of use of the canteen for different purposes.
- Questions 21 31 are personal importance given to specific features of the food provided by the canteen.
- Questions 32 38 are the needs of information from the foodservice provider.
- Questions 39 43 are overall concerns on food issues.
- Question 44 is self-identification as omnivore, vegetarian, vegan or pescatarian.

Except for the questions on basic sociodemographic information, health statement, the frequency of canteen usage and self-identification (question 12-15, 16-29, 44), the other 34 questions were adapted to the Likert 5-point scale: 1. Strongly disagree, 2. Disagree, 3. Neither agree nor disagree, 4. Agree, 5. Strongly agree. The Likert scale allows more precise capture of consumer insights with continuous variables. The control variables are the same in both test and control situations, allowing the comparison of segments.

Logistics and Data Collection

The study was conducted in either a university or workplace settings in all four countries with the following timelines and instruments:

Country	Timeline	Timeline	ICT used	Organization
	(Control groups)	(Test Groups)	(Smartphone/tablet)	settings
Denmark	29/1/2018-	21/3/2018-	Tablet	University
	30/1/2018	23/3/2018		Canteen
France	20/2/2018	20/2/2018	Tablet	Workplace
				Canteen
Greece	26/1/2018-	9/1/2018-	Tablet	University
	30/1/2018	12/1/2018		Canteen
UK	9/10/2017	9/10/2017	Tablet	University
	16/10/2017	16/10/2017		Canteen
	23/10/2017	23/10/2017		

Table. 1 Timeline, instruments and organisation settings in four countries

Each FoodSMART centre contacted catering providers for study explanation and decided whether they were interested in participating. Afterwards, dish information from each participating canteen was obtained and incorporated into the app layout for the later field tests. A standardised protocol was applied to the data collection in all countries with minor adjustments to adapt to real-time situations. On the control day, the app was introduced to consumers in the canteens either verbally or using the video, followed by the completion of control questionnaires by consumers to provide information regarding their views related to the app and canteen food with the target of the collection of the minimum total sample of 100 observations per country. On the test day, consumers completed the test questionnaires after using the application that was modified in accordance to the canteen menu of that day with the target of the collection of the minimum total sample of 100 observations per country. The recruitment of participants occurred randomly on campus or within corporate settings. Only the participants from field test countries were recruited to reduce bias from different cultural backgrounds.

Data Analysis

After considering the sample size of all four countries, principle component analysis (PCA) and confirmatory factor analysis (CFA) by structural equational modelling (SEM) were chosen to evaluate consumer food choices and compare between control groups and test groups respectively.

-PCA

PCA was used to examine the influencing factors of the use of ICT in canteen among the test groups and control groups of four countries. SPSS 22.0 was used for the analysis of 8 datasets (4 control

groups and 4 test groups). The 34 questions related to the app and canteen food in the questionnaire were analysed by PCA to obtain multiple factor sets (some condensed into 8, 9 and 10). The cumulative variance contribution rate of each factor set was obtained which represents the degree of interpretation of the original dataset. Every factor has a corresponding variance contribution rate corresponding to the original dataset. It can then be divided by the cumulative variance contribution rate to obtain the weight of each factor, which is also the weight of the corresponding question of that factor. The higher the weight of a factor, the more importance/influence that question has on a specific group of individuals in a specific country, to explain the differences of food choices across groups and countries.

-SEM

The differences between all control groups and test groups were assessed by SEM, as the added-up sample size is large enough for the analysis to produce reliable results. Amos20.0 was used to construct the model for the test groups as well as the control groups. The effect of Q1 to Q4 on all test groups and control groups was studied separately. In the structural model, 34 questions were segmented into four latent variables: Q1 (question 1-11) represents the general app functions and interface. Q2 (questions 12-22) represents the properties and qualities of the canteen food. Q3 (question 23-29) describes the information provided regarding canteen food while Q4 (question 30-34) describes the ethical issues related to food. The paths that link 34 indicator questions (i.e. observable variables) to 4 corresponding factors Q1-Q4 (i.e. latent variables) were then estimated. The initial model based on the hypothetical relationships of the latent variables and the observable variables was then revised several times according to the fit indexes (Schreiber et al., 2006; Hu & Bentler, 1999) and realistic considerations to maximise the model fit in order to compare the consumer preferences between two groups. The reliability (Cronbach's α) and validity (KMO and Bartlett sphericity test) were evaluated before model constructions to judge the suitability of the dataset for the SEM using SPSS 20.0.

Table. 2 Commonly used fit index

Name of the Index					
	χ² (chi- square)				
Absolute fit index	GFI				
riodorate ne maex	RMSEA				
Comparative fit	NFI				

index	CFI
	IFI
Information index	AIC

RESULTS

The sociodemographic characteristics and health status of the sample population are presented in Table Three below. A total number of 1031 consumers participated in the study across four countries with age ranging from 18 to 61 years. The percentage of the female in all countries are generally higher than that of the male. In Denmark, Greece and the UK, the mean age is around 21 because the study was conducted on campus and most of the participants are from the student communities. In France, the mean age is a lot higher (38.4) because the study was conducted in a company canteen. The educational level in all countries are generally secondary, or university level and most of the participants considered themselves having a Good or above health status. The majority of participants are omnivores, while Denmark has the highest proportion of non-omnivore (i.e. vegetarian, vegan, pescetarian and flexitarian) among four countries. The vegetarian population is also significantly higher in Denmark and UK than France and Greece.

	Denmark	France	Greece	United
	(n=305)	(n=99)	(n=343)	Kingdom
				(n=284)
Gender (%)	Female-63.6	Female-58.6	Female-58.9	Female-61.3
	Male-36.4	Male-41.4	Male-41.1	Male-38.7
Age (years)	23.49	38.4	20.47	20.36
	(SD=0.32)	(SD=1.38)	(SD=0.13)	(SD=0.21)
	(Range 18-55)	(Range 20-61)	(Range 18-36)	(Range 18-46)
Education	Secondary-	Elementary-11.1	Elementary-0.9	Secondary-60.2
Level (%)	40.3	Secondary-43.4	Secondary-	University-39.8
(, -,	University-59.7	University-45.5	88.0	
			University-11.1	
Health Status	Poor-2.6	Poor-5.1	Poor-1.7	Poor-4.2
(%)	Fair-15.1	Fair-23.8	Fair-12.0	Fair-19.4
(/5)	Good-53.1	Good-45.5	Good-54.5	Good-52.5
	Very good-29.2	Very good-21.2	Very good-31.8	Very good-23.9
Dietary	Omnivore-77.4	Omnivore-87.9	Omnivore-87.8	Omnivore-83.1
preference(%)	Vegetarian-6.6	Vegetarian-1.0	Vegetarian-1.6	Vegetarian-5.6
μι εί εί εί το εί (70)	Vegan-2.9	Vegan-2.0	Vegan-0.0	Vegan-2.5
	Pescetarian-4.9	Pescetarian-0.0	Pescetarian-1.1	Pescetarian-4.9
	Flexitarian-8.2	Flexitarian-9.1	Flexitarian-9.6	Flexitarian-3.9

Table. 3 Sociodemographic information and dietary preference of participants in the study across countries.

The frequency of canteen usage was captured in the survey with a scale from 1 (lowest usage) to 5 (highest usage). In the survey (Appendix 1 & 2), the frequency for breakfast and a hot meal in the canteen was measured per working week, with scale 1 representing one day or less per week and scale 2 to 5 representing an ascending frequency of usage from 2 days a week to 5 days a week. The frequency for the different beverages and pastry was measured per day, with scale 1 representing rarely or never and scale 2 to 5 representing an ascending frequency from 1 time per day to 4 times per day. The results show that most of the participants only have 1 to 2 breakfasts or hot meals in the canteen per working week and the frequency for daily purchases for beverages and pastry is also very low among all participants (less than 1 time per day).

	Denmark	France	Greece	United Kingdom
	(n=305)	(n=99)	(n=343)	(n=284)
Breakfast	1.30	1.65	1.16	1.30
	(SD=0.04)	(SD=0.12)	(SD=0.04)	(SD=0.04)
Hot meal	1.76	1.16	1.96	1.62
	(SD=0.06)	(SD=0.06)	(SD=0.10)	(SD=0.52)
Coffee & pastry	1.71	1.00	1.37	1.79
	(SD=0.05)	(SD=0.00)	(SD=0.05)	(SD=0.05)
Sugary beverages	1.34	1.62	1.10	1.51
	(SD=0.04)	(SD=0.07)	(SD=0.03)	(SD=0.05)
Water & fresh juice	1.57	1.71	1.60	1.8
	(SD=0.05)	(SD=0.07)	(SD=0.07)	(SD=0.06)

Table. 4 The mean of frequency for canteen usage across four countries (scale 1-5)

Comparisons across countries and organisational settings

In the results showing the influence of individual factors on consumers' decision making, the higher the weighting of the question, the higher its rank and the more influence it has on consumers' behaviour. For example, the individual factor that is ranked 1 (marked in red colour) means it has the highest weighting and influence among all the factors. The weightings are then ranked and summarised in Table 5 below (full results available in Appendix 3).

Denmark (university canteen)

Most of the top individual factors of the Danish participants in both control and test groups are related to the properties and qualities of the food, such as the safety, freshness, hygiene and sustainability of the canteen food. Ethical issues related to food also concerns Danish consumers hugely. Questions containing information such as animal and human rights, water shortage, sustainability and healthy eating were all ranked 1 in the test group and 2 in the control group. The subtle difference in ranking is possibly due to the change in environment. However, we can observe

from the results that ethical issues are significant to Danish consumer in general. On the other side, confidence and training regarding app usage, information about allergens are the least important factors.

France (workplace canteen)

In the results, there is an interesting shift of the most important factors (rank 1) from the app functions in the control group and interface to the canteen food properties and qualities in the test group that can be explained by various possible causes. Questions regarding app functions and interface such as a system that is simple, easy to use/learn and consistent as well as integrated functions were ranked top in the control group, but 2 in the test group. Meanwhile, questions regarding canteen food qualities and properties such as healthiness, taste, sustainability, hygiene, freshness and personal preference fits were ranked 1 in the test group but ranked 2 to 4 in the control group. Nevertheless, the ranks of the other groups are still relatively consistent, especially regarding app functions and interface. The factors that French consumers have the least concern about are scientific accuracy, personalised information and training for app usage. The information provided regarding canteen food has less influence in general on consumers than other factors.

Greece (university canteen)

Similar to the results in Denmark, the factors that concern Greek participants the most are concentrated in the questions focusing on canteen food qualities and properties. In particular on the healthiness, taste, hygiene, sustainability and freshness. Furthermore, easily understandable information regarding canteen food was also ranked top in both control and test groups. There are some variations in the results comparing both groups. For example, the test group cares more about the accuracy and personalised information as well as the variety and personalised canteen food (rank 1) more than the control group (rank 4-6). The factors that have the least influence varies between two groups. The chef recommendation, discount and app learning have the least impact on the control group while chef recommendations, availability of plant-based dish and integrated app functions have the least impact on the test group.

United Kingdom (university canteen)

The results for the ranking of top factors for UK participants are mostly consistent in both groups, which consists of safety, taste, sustainability, freshness and the variation of food provided. The subtle difference in ranking of easily understandable information is still rather consistent (rank 1 in control group and 2 in test group). However, the test group participants are more aware of the environmentally friendly aspect of the food (rank 1) compare to the control group participants (rank

6). Both groups do not think the confidence of using the app is an essential factor while the control group considered the healthiness of the food and healthy eating lifestyle are the least important factor and the test group considered locally sourced food and global warming the least important factor.

From the aforementioned results from four countries and Table 5 below, we can observe that the consumers in all the countries have a similar trait of valuing the factors related to food quality in the canteen the most, especially food hygiene, sustainability, safety and freshness. However, their preferences in other categories of factors such as the app functions, ethical issues related to food and the information provided in the canteen vary from country to country. In the case of comparing between two organisational settings (i.e. workplace and university canteens), no significant conclusions can be drawn from the current results. The data collection in workplace canteen was only collected in France while the rest of the field tests were conducted in university canteens, due to logistics reasons. Thus, the results from France is the only representation of consumer preferences in the workplace canteen. The sample size for workplace canteen is rather small compared to the rest in order to obtain a reliable comparison.

Question No. Acronym	Acronym	Question	UK Control	UK Test	DK Control	DK Test	GR Control	GR Test	FR Control	FR Test
1	appfred	I think that I would like to use a system like this frequently	7	2	2	4	3	7	6	2
2	appsim	The FoodSWART app system should be simple	2	3	9	2	7	2	—	2
က	appeasu		2	3	9	2	7	2	—	2
4	appfunc		2	7	က	2	9	∞	Ţ	2
5	apptech	I would not want the need of a technical person to be able to use this system	2	9	က	2	1	9	₩	2
9	appcons	The FoodSWART app system should be consistent	2	3	က	2	9	9	┖	2
7	appeasl	The FoodSWART app system is easy to learn	2	3	က	7	6	7	₩	2
∞	appmanu	The FoodSWART app system should be wieldy (manageable) to use	2	3	က	2	9	7	Ţ	2
6	appconf	I would need to feel confident about using the FoodSMART app for actually using it	8	8	∞	6	9	2	9	7
10	applearn	I would prefer not to learn a lot of things before I could get going with the FoodSWART	2	2	∞	7	6	2	7	∞
11	appuse	I believe the FoodSWART App will be useful to customers in a canteen setting to help them to get informed about dishes offered	7	7	9	4	3	7	4	4
12	fsafe	It is important for me that the food provided by the canteen is safe	1	1	1	1	1	3	2	1
13	fhealthy	It is important for me that the food provided by the canteen is healthy	8	2	6	2	1	T.	7	1
14	ftasty	It is important for me that the food provided by the canteen is tasty	1	T-	П	4	1	1	4	1
15	fenvfr	It is important for me that the food provided by the canteen is environmentally friendly	9	1	7	1	2	₩	က	1
16	fhygie	It is important for me that the food provided by the canteen is prepared with care for hygiene	1	Ţ	1	1	1	1	7	1
17	fsust	It is important for me that the food provided by the canteen is sustainable	1	1	2	1	1	1	3	1
18	ffresh	It is important for me that the food provided by the canteen is fresh	1	1	1	-	1	\leftarrow	7	
19	flocal	It is important for me that the food provided by the canteen is locally sourced/produced	4	∞	4	9	2	9	3	1
20	fpersneed	fpersneed It is important for me that the food provided by the canteen responds to my personal needs and preferences	4	1	4	∞	4	~	4	
21	hdish	It is important for me that the canteen provides at least one plant-based dish option	4	2	4	-	2	10	4	4
22	fvaried	It is important for me that the food provided by the canteen is varied	1	1	1	3	4	1	7	4
23	infacc	It is important for me that the information provided by the canteen is scientifically accurate	4	2	4	6	9	1	8	5
24	infpers	It is important for me that the information provided by the canteen is personalised to my needs	4	2	4	33	4	\leftarrow	6	2
25	infeasyun	infeasyung It is important for me that the information provided by the canteen is easy to understand	1	7	T	33	1	1	∞	2
76	infchefrec	infchefrec It is important for me that the canteen informs me about the day's or chef's recommendations	7	2	2	က	8	6	2	2
27	infdisc	It is important for me that the canteen informs me about special offers and discounts	7	2	2	7	8	4	2	2
28	infcalor	infcalor It is important for me that the canteen informs me about the calories in the dishes	9	2	2	2	က	4	2	9
29	infallerg	infallerg It is important for me that the canteen informs me about allergens	9	2	7	10	5	2	5	3
30	genheale	genhealea I am usually concemed about health and healthy eating	8	2	2	\leftarrow	2	~	7	3
31	genenv	I am usually concemed about global warming and sustainability	3	6	2	1	2	m	9	3
32	genanrigh	genanright am usually concemed about animal rights	3	4	2	1	2	m	က	33
33	genhumri	genhumrig am usually concemed about human rights	3	4	2	1	2	m	9	33
34	genwsh	genwsh I am usually concerned about water shortages	3	4	2	1	2	က	9	9

Table. 5 Ranking of individual factor's weightings across test and control groups in four countries.

Comparisons between control and test groups (Data mining)

Two models for factors that influence consumer food choices in the canteen were constructed to mine the data collected and explore the relationships and intensity of those relationships between factors.

Evaluation of model reliability and validity

The Cronbach's α coefficient which indicates the stability and internal consistency was used to evaluate the reliability of the models. The higher the reliability coefficient of the scale, the greater the correlation between the items and the smaller the standard error of measurement (Hatcher, 1994). The reliability is good and desirable when the Cronbach's α coefficient is >0.8. The range between 0.7 and 0.8 is acceptable while the range between 0.6 and 0.7 is questionable but still acceptable. A Cronbach's α below 0.6 is considered weak and below 0.5 is unacceptable (Nunnally, 1978). The Cronbach's α of all the latent variables were in the acceptable or desirable range, which confirms the reliability of the model (Table. 6).

Latent variables	Number of items	Cronbach's α	Cronbach's α
	(observable variables)	(Control group)	(Test group)
Q1	11	0.802	0.761
Q2	11	0.811	0.879
Q3	7	0.758	0.765
Q4	5	0.774	0.688

Table. 6 Reliability test results (Cronbach's α coefficient)

The overall validity was evaluated by the Kaiser-Meyer-Olkin (KMO) test and Bartlett's test. KMO measures the sampling adequacy. The KMO value closer to 1 the better while 0.6 is suggested as the minimum requirement. The Bartlett's test is for the null hypothesis that the correlation matrix has an identity matrix. A value of less than 0.05 is considered at the significant level (Kim, 2008).

		KMO of	В	artlett's Test of Spheri	icity
	Sampling		Approx. Chi-	Approx. Chi- DF (Degree of	
		Adequacy	square	Freedom)	
Control	group	0.863	7667.343	561	0.000
sample					
Test group sample		0.862	5994.857	561	0.000

Table.7 KMO-Bartlett's test results

The overall KMO values are > 0.7, indicating good adequacy while Bartlett's test shows a P-value < 0.05, meaning the dataset is fit for the modelling.

SEM

After evaluating the model reliability and adequacy, models for both control and test groups were constructed. The paths were estimated based on 34 indicator questions (i.e. observable variables) to 4 corresponding factors Q1-Q4 (i.e. latent variables):

- Q1 (question 1-11)-the general app functions and interface.
- Q2 (questions 12-22)-properties and qualities of the canteen food.
- Q3 (question 23-29)-information provided regarding canteen food.
- Q4 (question 30-34)-the ethical issues related to food.

When the initial model is obtained, the validity of the model can be judged by the fit index (see method), and the standard can be appropriately relaxed according to the actual situations. However, the evaluation of this indicator is not the only evaluation of the model, and it is necessary to pay attention to the rational interpretation of the indicators. The final model is obtained (Fig.1 & Fig.2) after meeting the theoretical or acceptable ranges of the fit index (Sivo et al., 2006) and adjustments of correlated paths (full analysis available in Appendix 4).

-Control group model

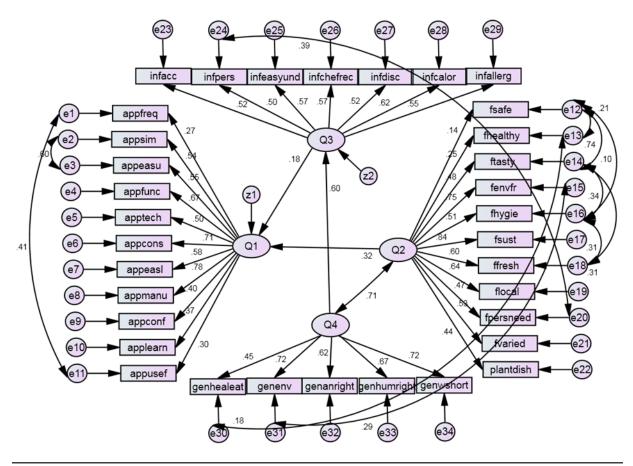


Fig.1 The final SEM path diagram of the control group.

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Final model	2.689	0.066	0.847	0.761	0.801	0.821	0.072	2197.581
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller, the
Range								better
Acceptable range	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller, the
								better

Table. 8 Fit index of the final model of the control group

⁻Test group model

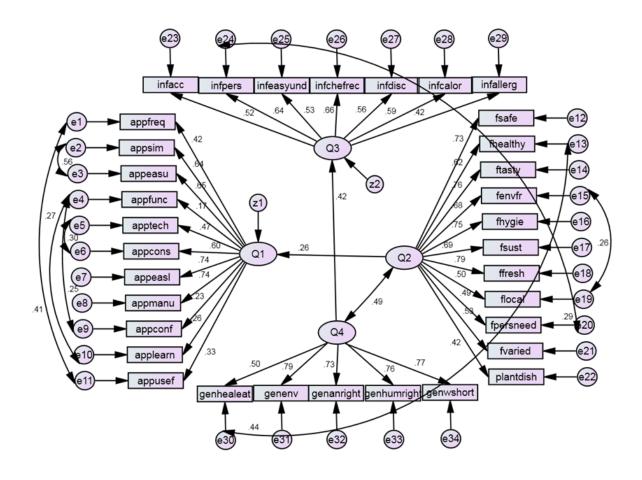


Fig.1 The final SEM path diagram of the test group

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Final model	2.775	0.066	0.843	0.783	0.849	0.848	0.066	1693.271
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller, the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller, the
range								better

Table. 9 Fit index of the final model of the test group

Significant positive correlations can be observed among the corresponding factors (Q1 to Q4). The Pearson product-moment correlation coefficients (PCCs) of the four dimensions are smaller than 0.7 that means there is no influence from collinearity. Thus, there was no increase in the approx. Chi-Square value, or appearance of negative variance or unreasonable estimates. From both models, most of the indicator questions are significantly positively correlated with the corresponding factors, and the intensity of the correlation varies from indicator to indicator. The higher the value of the coefficient, the stronger the correlations, which also means that the indicator has a greater influence on the corresponding factors. For example, regarding the app functions and interface (Q1), the highest coefficient is found with the app should be mangeable to use (appmanu) in both control and

test groups. This means this specific indicator regarding app learning is the most critical factor for the app function and interface within the population surveyed.

The top indicator for app functions and interface (Q1) in the control group model is that the app should be manageable to use (0.78) while that of the test group is the app should be manageable to use (0.74) and easy to use (0.74). For canteen food qualities and properties (Q2) in the control group, the top indicator is that the canteen food is sustainable (0.84) while that of the test group is that the canteen food should be fresh (0.79). Meanwhile, the coefficients for food sustainability in the test group and food freshness in the control group are also high, 0.69 and 0.60 respectively. The top indicator for information provided in the canteen (Q3) of the control group is calorie information (0.62) while that of the test group is chef recommendation (0.66). The rest of the indicators in that group can be relatively equally influential, since the value of coefficients all fall into the 0.5-0.7 range, except that of allergy information in the test group (0.42). Lastly, the indicator with the highest value of the coefficient of food-related ethical issues (Q4) is global warming and sustainability for both control and test groups (0.72 & 0.79).

Discussion

In this report, consumer food choice across countries and organisational settings were interpreted and evaluated through data mining and related measured/analytical approaches. All of the factors within the questionnaire (i.e. app functions and interface, food qualities, information provision and food-related ethical issues) are significantly positively correlated to consumer food choice. Significant positive correlations are also observed between all the indicator questions and their corresponding factors. The value of the coefficients of each indicator shows the intensity of its influence on the corresponding factor. Ease to use app, food freshness, food sustainability, provision of calories and recommendation information, and global warming/sustainability issues have the highest value of the coefficient in respect to their corresponding factors. This provides direction of prioritisation when addressing specific issues in relation to the aforementioned four factors and more common understandings of consumer food choice as a whole (across four countries).

On the other hand, findings regarding comparisons of consumer food choice among countries show that consumers share the similar trait of valuing canteen food quality the most, especially for food sustainability, freshness, hygiene and safety. The consumer preferences for the rest of the factor vary from country to country. No significant conclusions can be drawn regarding differences and similarities in two organisational settings (workplace and university canteen) from the results due to

the small amount of data collected in the workplace canteen. Further study can be performed to produce more inputs of consumer food choice in the workplace canteen and other organisational settings. Information regarding the key stages of food preparation was not captured via the app and the questionnaire due to logistic reasons. Future investigations can be done to follow the key stages for food preparation in the canteen via either the app or questionnaire.

Apart from the main findings, the reason for inconsistency in results of the French population among four countries and between the two groups could be that French participants have reported having trouble understanding the app introduction video used during the control situation due to language barriers, which in turn might cause difficulties in understanding the app functions and interface. Compared to the control group; the test group participants used the app after watching the introduction video. This change in experience could be the potential reason for the shift of attention from the app to the canteen food. However, the results from the opposite group still had relatively consistent results (e.g. the questions ranked 1 in the control group were all ranked 2 in the test group). This is possible because that even after using the app in real-life, the language barrier still exists as the app interface is in the English language. Participants in the French test group still experienced difficulties in navigating the app in English. Moreover, the sample size of France (n=99) is lower than the targeted sample size (100 observations for each group), and results are less consistent in a smaller population, and hard to determine the real reasons behind the change in attitudes. Further investigations (i.e. obtain a larger sample) are needed to explain this phenomenon. Another limitation of the study is the application used during the field tests were all tablets, which could not truly reflect the consumers' responses using other applications (e.g. smartphone).

CONCLUSIONS

The study successfully interprets and evaluates consumer food choice across countries (Denmark, France, Greece and UK) via data mining and other related measured/analytical approaches. Specific indicators can be targeted when addressing issues related to app functions, food quality, information provision and food-related ethical issues during ICT development for dietary behaviour change. The consumer insights obtained from the study can be utilised for the guidance of commercialisation and future research directions.

REFERENCES

Bohm E. and Quartuccio N. 2008. Healthy dining restaurant nutrition program – a winning recipe for consumers, dietitians and restaurants. Journal of the American Dietetic Association, 108, A-112.

Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M.R. and Christensen, H., 2013. Smartphones for smarter delivery of mental health programs: a systematic review. Journal of medical Internet research, 15(11), p.e247.

Ehrenreich, B., Righter, B., Rocke, D.A., Dixon, L. and Himelhoch, S., 2011. Are mobile phones and handheld computers being used to enhance delivery of psychiatric treatment?: a systematic review. The Journal of nervous and mental disease, 199(11), pp.886-891.

Hatcher, Larry. 1994. A Step-by-Step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling (SAS Publishing).

Hu, Li-tze, and Peter M Bentler. 1999. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives.

Kim, Hee-Ju. 2008. 'Common Factor Analysis Versus Principal Component Analysis: Choice for Symptom Cluster Research', Asian Nursing Research, 2: 17-24.

Lowe, B., de Souza-Monteiro, D. M. and Fraser, I. (2013), "Nutritional Labelling Information: Utilisation of New Technologies", Journal of Marketing Management, Vol. 9 No. 11/12, pp. 1337-1366.

Muessig, K.E., Nekkanti, M., Bauermeister, J., Bull, S. and Hightow-Weidman, L.B., 2015. A systematic review of recent smartphone, Internet and Web 2.0 interventions to address the HIV continuum of care. Current HIV/AIDS Reports, 12(1), pp.173-190.

Nunnally, J.C. 1978. Psychometric theory (McGraw-Hill).

Murray, E., 2012. Web-based interventions for behavior change and self-management: potential, pitfalls, and progress. Medicine 2.0, 1(2), p.e3.

Ofcom, 2015. Communications Market Report. London: Ofcom.

Schreiber, James, Amaury Nora, Frances Stage, Elizabeth A. Barlow, and Jamie King. 2006. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review.

Sivo, Stephen A., Xitao Fan, E. Lea Witta, and John T. Willse. 2006. 'The Search for "Optimal" Cutoff Properties: Fit Index Criteria in Structural Equation Modeling', The Journal of Experimental Education, 74: 267-88.

Webb, T., Joseph, J., Yardley, L. and Michie, S., 2010. Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of medical Internet research, 12(1), p.e4.

Appendix 1

Questionnaire for Control Groups

Dear participant,

We would be grateful if you could set your thoughts down on this form.

This study aims to critically assess consumer evaluation of the FoodSMART app. FoodSMART is an application to bridge between the consumer and the foodservice operators responsible for this canteen. It will allow you to introduce your own preferences for foods and information, and it will provide you with the dishes matching more closely your stated preferences.

If you want more information about FoodSMART, please watch the video at https://youtu.be/roLINbLvJMA

Your contribution to better understand consumer response and use of this app will help us to improve it, and eventually provide a better-targeted system for consumers.

Any answers you give will be kept strictly confidential.

Thank you for your time and help and valuable ideas.

Please provide your level of agreement or disagreement with the following statements before having used the FoodSMART app

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
I think that I would like to use a system like this frequently	(1) 🗖	(2)	(3)	(4)	(5)
The FoodSMART app system should be simple	(1) 🗖	(2)	(3)	(4)	(5)
The FoodSMART app system should be easy to use	(1) 🗖	(2)	(3)	(4)	(5)
The FoodSMART app's	(1)	(2)	(3)	(4)	(5)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
functions should be well					
integrated					
I would not want the need of a					
technical person to be able to	(1)	(2)	(3)	(4)	(5)
use this system					
The FoodSMART app system	<i>(</i> ∪ □	(a) 🗖	(a) 🗖	<i>(</i>).□	(n) 🗖
should be consistent	(1)	(2)	(3)	(4)	(5)
The FoodSMART app system is					
easy to learn	(1)	(2)	(3)	(4)	(5)
The FoodSMART app system					
should be wieldy (manageable)	(1)	(2)	(3)	(4)	(5)
to use					
I would need to feel confident					
about using the FoodSMART	(1)	(2)	(3)	(4)	(5)
app for actually using it					
I would prefer not to learn a lot of					
things before I could get going	(1)	(2)	(3)	(4)	(5)
with the FoodSMART app					
I believe the FoodSMART App					
will be useful to customers in a					
canteen setting to help them to	(1)	(2)	(3)	(4)	(5)
get informed about dishes					
offered					

Please mark the box that corresponds to you

(2)	☐ I am a male					
Plea	se write your age in years					
Plea	se provide us with your high	est educatio	nal achieve	ment (mark t	he box corre	sponding
to yo	ou)					
(1)	☐ Elementary School					
(2)	☐ Secondary School					
(3)	☐ University degree					
l thir	nk that my health is (mark th	e hov correc	nonding to	von)		
	•	e box corres	portaing to ;	you)		
(1)	Poor					
(2)	☐ Fair					
(3)	Good					
(4)	☐ Very Good					
On a	a normal working week (mar	k the box co	rresponding	to you)		
	Or .	nce a week or Tw	o davs in the T	Three days in Fou	ur davs in the Five	e davs in the
		less	week	the week	week	week
How	frequently do you use the					
cante	een to buy your breakfast?	(1) 🗖	(3)	(2)	(4)	(5)
How	frequently do you use the	_		_		_
cante	een to buy a hot meal?	(1)	(3)	(2)	(4)	(5)

On a normal working week (mark the box corresponding to you)

	Darahi ar navar	Once a day or	Two times in the	Three times in	Four times in
	Rarely or never	less	day	the day	the day
How frequently do you use the					
canteen for a coffee +	(1)	(2)	(3)	(4)	(5)
pastry/cake/cookie					
How frequently do you use the					
canteen for a sugary sweetened	(1) 🗖	(2)	(3)	(4)	(5)
beverage					
How frequently do you use the					
canteen for acquiring drinking	(1) 🗖	(2)	(3)	(4)	(5)
water or fresh pressed juice					

Please provide your level of agreement or disagreement with the following statements (mark the box corresponding to your answer)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
It is important for me that the food provided by the canteen is safe	(1)	(2)	(3)	(4)	(5) 🗖
It is important for me that the food provided by the canteen is healthy	(1) 🗖	(2)	(3)	(4)	(5) 🗖
It is important for me that the food provided by the canteen is tasty	(1)	(2)	(3)	(4)	(5)
It is important for me that the food provided by the canteen is	(1)	(2)	(3)	(4)	(5)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
environmentally friendly					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
prepared with care for hygiene					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
sustainable					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
fresh					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
locally sourced/produced					
It is important for me that the					
food provided by the canteen	(1) 🗖	(2)	(3)	(4)	(5)
responds to my personal needs					
and preferences					
It is important for me that the	-		D	D	~ -
canteen provides at least one	(1)	(2)	(3)	(4)	(5)
plant-based dish option					
It is important for me that the	w D	(a) □	□	. □	(5. □
food provided by the canteen is varied	(1)	(2)	(3)	(4)	(5)
vaneu					

Please provide your level of agreement or disagreement with the following statements about your needs for information from the canteen (mark the box corresponding to your answer)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
It is important for me that the					
information provided by the	(1)	(2)	(3)	(4)	(5)
canteen is scientifically accurate					
It is important for me that the					
information provided by the					
canteen is personalised to my	(1)	(2)	(3)	(4)	(5)
needs					
It is important for me that the					
information provided by the	(1)	(2)	(3)	(4)	(5)
canteen is easy to understand					
It is important for me that the					
canteen informs me about the	(1)	(2)	(3)	(4)	(5)
day's or chef's recommendations					
It is important for me that the					
canteen informs me about	(1)	(2)	(3)	(4)	(5)
special offers and discounts					
It is important for me that the					
canteen informs me about the	(1)	(2)	(3)	(4)	(5)
calories in the dishes					
It is important for me that the					
canteen informs me about	(1)	(2)	(3)	(4)	(5)
allergens					

Please provide your level of agreement or disagreement with the following statements about your general concerns (mark the box corresponding to your answer)

Neither agree

Strongly

	disagree	Disagree	nor disagree	Agree	Strongly agree	
I am usually concerned about health and healthy eating	(1) 🗖	(2)	(3)	(4)	(5)	
I am usually concerned about global warming and sustainability	(1) 🗖	(2)	(3)	(4)	(5)	
I am usually concerned about animal rights	(1) 🗖	(2)	(3)	(4)	(5)	
I am usually concerned about human rights	(1) 🗖	(2)	(3)	(4)	(5)	
I am usually concerned about water shortages	(1) 🗖	(2)	(3)	(4)	(5)	
Lastly, could you please let us	know how o	do vou see v	vourself as foo	od consun	ner?	
Lastly, could you please let us know how do you see yourself as food consumer? (1)						
 (1)						
(3) am vegan (I eat only plant-based foods and avoid any animal products)						

Thank you very much for your participation! Your are contributing to the provision of better information to consumers.

☐ I am flexitarian (I eat mostly plant-based foods, but occasionally I would eat foods of animal

☐ I am pescetarian (I eat plant-based like vegetarians and include fish)

(4)

(5)

origin)

Appendix 2

Questionnaire for Test Groups

Dear participant,

We would be grateful if you could set your thoughts down on this form.

You have used the FoodSMART app today, and we would like to hear your opinion about the system and whether we can make improvements.

The aim of this study is to critically assess consumer evaluation of the FoodSMART app.

Your contribution to better understand consumer response and use of this app will help us to improve it, and eventually provide a better targeted system for consumers.

Any answers you give will be kept strictly confidential.

Thank you for your time and help and valuable ideas.

Could yo	ı please l	et us knov	w in which	canteen a	are you	located?
----------	------------	------------	------------	-----------	---------	----------

ity
i

(2)	DK -	Copenhagen	University
-----	------	------------	------------

(4) HE - Greece

Please provide your level of agreement or disagreement with the following statements before having used the FoodSMART app

	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
I think that I would like to use a system like this frequently	(1) 🗖	(2)	(3)	(4)	(5) 🗖
The FoodSMART app system should be simple	(1) 🗖	(2)	(3)	(4)	(5)
The FoodSMART app system should be easy to use	(1) 🗖	(2)	(3)	(4)	(5)
The FoodSMART app's	(1)	(2)	(3)	(4)	(5)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
functions should be well					
integrated					
I would not want the need of a					
technical person to be able to	(1)	(2)	(3)	(4)	(5)
use this system					
The FoodSMART app system	<i>(</i> 0.□	∞ □	∞ □	(1) □	(c) 🗖
should be consistent	(1)	(2)	(3)	(4)	(5) 🗖
The FoodSMART app system is	🗖	🗖	🗖		🗖
easy to learn	(1)	(2)	(3)	(4)	(5)
The FoodSMART app system					
should be wieldy (manageable)	(1)	(2)	(3)	(4)	(5)
to use					
I would need to feel confident					
about using the FoodSMART	(1)	(2)	(3)	(4)	(5)
app for actually using it					
I would prefer not to learn a lot of					
things before I could get going	(1)	(2)	(3)	(4)	(5)
with the FoodSMART app					
I believe the FoodSMART App					
will be useful to customers in a					
canteen setting to help them to	(1)	(2)	(3)	(4)	(5)
get informed about dishes					
offered					

Please mark the box that corresponds to you				
(1)	☐ I am a female			
(2)	☐ I am a male			
Plea	ase write your age in years			
Plea	ase provide us with your highest educational achievement (mark the box corresponding			
to y	ou)			
(1)	☐ Elementary School			
(2)	☐ Secondary School			
(3)	☐ University degree			
Wha	at is your country of residence?			
	□ Denmark			
(2)	☐ France			
(3)	☐ Austria			
(4)	☐ Greece			
I thir	nk that my health is (mark the box corresponding to you)			
(1)	□ Poor			
(2)	☐ Fair			
(3)	Good			

(4)	l Very	Good
-----	---------------	------

On a normal working week (mark the box corresponding to you)

	Once a week or Two days in the		Three days in Four days in the Five days		Five days in the
	less	week	the week	week	week
How frequently do you use the canteen to buy your breakfast?	(1)	(3)	(2)	(4)	(5)
How frequently do you use the canteen to buy a hot meal?	(1)	(3)	(2)	(4)	(5)

On a normal working week (mark the box corresponding to you)

	Paraly or payor	Once a day or Two times in the Three times in			Four times in
	Rarely or never	less	day	the day	the day
How frequently do you use the					
canteen for a coffee +	(1)	(2)	(3)	(4)	(5)
pastry/cake/cookie					
How frequently do you use the					
canteen for a sugary sweetened	(1)	(2)	(3)	(4)	(5)
beverage					
How frequently do you use the					
canteen for acquiring drinking	(1)	(2)	(3)	(4)	(5)
water or fresh pressed juice					

Please provide your level of agreement or disagreement with the following statements (mark the box corresponding to your answer)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
It is important for me that the					
food provided by the canteen is	(1) 🗖	(2)	(3)	(4)	(5)
safe					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
healthy					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
tasty					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
environmentally friendly					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
prepared with care for hygiene					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
sustainable					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
fresh					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
locally sourced/produced					

	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
It is important for me that the					
food provided by the canteen	4 0 □	(2)	(3)	(1) □	(E)
responds to my personal needs	(1)	(2)	(3)	(4)	(5)
and preferences					
It is important for me that the					
canteen provides at least one	(1)	(2)	(3)	(4)	(5)
plant-based dish option					
It is important for me that the					
food provided by the canteen is	(1)	(2)	(3)	(4)	(5)
varied					

Please provide your level of agreement or disagreement with the following statements about your needs for information from the canteen (mark the box corresponding to your answer)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
It is important for me that the information provided by the canteen is scientifically accurate	(1)	(2)	(3)	(4)	(5) 🗖
It is important for me that the information provided by the canteen is personalised to my needs	(1)	(2)	(3)	(4)	(5)
It is important for me that the information provided by the canteen is easy to understand	(1)	(2)	(3)	(4)	(5)

	Strongly Disagree		Neither agree	Agree	Strongly agree	
	disagree	Disagree	nor disagree	Agree	Strongly agree	
It is important for me that the						
canteen informs me about the	(1)	(2)	(3)	(4)	(5)	
day's or chef's recommendations						
It is important for me that the						
canteen informs me about	(1)	(2)	(3)	(4)	(5)	
special offers and discounts						
It is important for me that the						
canteen informs me about the	(1)	(2)	(3)	(4)	(5)	
calories in the dishes						
It is important for me that the						
canteen informs me about	(1)	(2)	(3)	(4)	(5)	
allergens						

Please provide your level of agreement or disagreement with the following statements about your general concerns (mark the box corresponding to your answer)

	Strongly disagree	Disagree	Neither agree	Agree	Strongly agree
I am usually concerned about health and healthy eating	(1) 🗖	(2)	(3)	(4)	(5)
I am usually concerned about global warming and sustainability	(1)	(2)	(3)	(4)	(5)
I am usually concerned about animal rights	(1) 🗖	(2)	(3)	(4)	(5)
I am usually concerned about	(1)	(2)	(3)	(4)	(5)

		Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree				
hum	an rights									
I am	usually concerned about	(1)	(2)	(3)	(4)	(5)				
wate	er shortages	(1)	(2)	(3)	(4)	(3)				
Last	tly, could you please let us k	now how do	you see y	ourself as foo	d consum	ier?				
(1)	☐ I am omnivore (I eat every	rthing)								
(2)	☐ I am vegetarian (I eat plan	it-based and	include egg	s and dairy in m	y food)					
(3)	(3)									
(4)	(4) am pescetarian (I eat plant-based like vegetarians and include fish)									
(5)	☐ I am flexitarian (I eat most	ly plant-base	d foods, bu	t occasionally I v	vould eat t	foods of animal				
	origin)									
(1)	☐ Extremely Dissatisfied									
(2)	☐ Moderately Dissatisfied									
(3)	☐ Slightly Dissatisfied									
(4))									
(5)	☐ Slightly Satisfied									
(6)	☐ Moderately Satisfied									
(7)	☐ Extremely Satisfied									

Thank you very much for your participation! Your are contributing to the provision of better information to consumers.

Appendix 3

PCA (Full Results)

DK CONTROL

	In	itial Eigenvalue	S	Extraction S	Sums of Square	d Loadings	Rotation S	ums of Square	Loadings
Compon			Cumulative			Cumulative			Cumulative
ent	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	8.896	26.164	26.164	8.896	26.164	26.164	3.808	11.200	11.200
2	3.325	9.779	35.943	3.325	9.779	35.943	3.422	10.064	21.265
3	2.293	6.743	42.686	2.293	6.743	42.686	3.286	9.664	30.929
4	1.963	5.775	48.461	1.963	5.775	48.461	2.794	8.217	39.146
5	1.549	4.557	53.018	1.549	4.557	53.018	2.513	7.391	46.536
6	1.275	3.751	56.769	1.275	3.751	56.769	2.007	5.904	52.440
7	1.207	3.551	60.320	1.207	3.551	60.320	1.695	4.985	57.425
8	1.060	3.116	63.436	1.060	3.116	63.436	1.543	4.539	61.964
9	1.001	2.945	66.381	1.001	2.945	66.381	1.502	4.417	66.381
10	.940	2.764	69.145						
11	.786	2.310	71.455						
12	.732	2.152	73.607						
13	.714	2.101	75.707						
14	.657	1.933	77.641						
15	.639	1.878	79.519						
16	.597	1.757	81.276						
17	.587	1.727	83.003						
18	.545	1.603	84.606					-	

		Ī	
19	.499	1.467	86.072
20	.486	1.429	87.502
21	.476	1.400	88.902
22	.410	1.207	90.109
23	.409	1.203	91.312
24	.361	1.061	92.374
25	.346	1.017	93.390
26	.332	.976	94.367
27	.299	.880	95.246
28	.290	.853	96.100
29	.269	.790	96.890
30	.254	.748	97.637
31	.229	.673	98.311
32	.213	.627	98.937
33	.186	.547	99.484
34	.175	.516	100.000

Rotation Component Matrix ^a

		Component									
	1	2	3	4	5	6	7	8	9		
1					.505	.486					
2			.368			.750					
3			.416			.687					
4			.735			.277					
5			.756								
6			.839								
7			.520					.455			
8			.721			.281					
9								.793			
10	.288		.346	.254				.489	305		
11	.325				.452	.474		.254			
12	.726										
13	.357			.383					.568		
14	.784										
15		.546		.285			.447				
16	.791										
17	.355	.488		.347			.427				
18	.630						.279				
19		.440		.567							
20	.298			.709					.267		

21			.615			.440		
22	.614		.306					
23	.302		.488			.272	263	
24			.703	.388				
25	.464		.318		.269	.288		
26				.746				
27	.253			.686				
28				.659		.345		.267
29	.274			.288		.733		
30								.830
31		.821						
32		.750						
33		.654						
34		.799						

Extraction Method: Principle component analysis
Rotation Method: Vairmax with Kaiser Normalisation

a. Rotation converged in 9 iterations

Component	Question No.	Variance contribution rate	Cumulative variance contribution rate	Weight
1	12\14\16\18\22\25	11.2	11.2	0.168723
2	15\17\31\32\33\34	10.064	21.265	0.15161
3	4\5\6\7\8	9.664	30.929	0.145584
4	19\20\21\23\24	8.217	39.146	0.123785
5	1\26\27\28	7.391	46.536	0.111342
6	2\3\11	5.904	52.44	0.088941
7	29	4.985	57.425	0.075097
8	9\10	4.539	61.964	0.068378
9	13/30	4.417	66.381	0.06654

DK TEST

Total Variance Explained

		Initial Eigenvalu	ies	Extraction Sums of Squared Loadings				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	6.324	18.601	18.601	6.324	18.601	18.601		
2	4.371	12.855	31.456	4.371	12.855	31.456		
3	2.920	8.590	40.046	2.920	8.590	40.046		
4	2.237	6.581	46.626	2.237	6.581	46.626		
5	1.618	4.758	51.384	1.618	4.758	51.384		
6	1.572	4.624	56.008	1.572	4.624	56.008		

42

7	1.276	3.753	59.761	1.276	3.753	59.761
8	1.146	3.369	63.130	1.146	3.369	63.130
9	1.042	3.064	66.194	1.042	3.064	66.194
10	1.028	3.023	69.217	1.028	3.023	69.217
11	.895	2.631	71.848			
12	.861	2.533	74.381			
13	.816	2.401	76.782			
14	.753	2.216	78.998			
15	.700	2.059	81.056			
16	.623	1.831	82.888			
17	.581	1.709	84.597			
18	.571	1.680	86.276			
19	.535	1.574	87.851			
20	.496	1.458	89.309			
21	.431	1.267	90.576			
22	.408	1.200	91.776			
23	.384	1.129	92.905			
24	.344	1.011	93.916			
25	.339	.996	94.912			
26	.288	.848	95.761			
27	.268	.789	96.550			
28	.238	.700	97.250			
29	.216	.635	97.885			
30	.206	.606	98.490			
31	.158	.466	98.956			
32	.147	.432	99.388			
33	.112	.330	99.718			
34	.096	.282	100.000			

Rotation Component Matrix ^a

	Rotation Component Matrix ° Component											
			J									
	1	2	3	4	5	6	7	8	9	10		
1	.268		.266	.562			369			304		
2	.327	.643					.275					
3	.333	.719										
4	.285	.706							328			
5		.470			373					363		
6	.266	.721		.323								
7	.268	.366	.250	.318		289		332				
8	.256	.681		.322	.268							
9		.283			.325		.323	.380	.393	.365		
10					255	.429	.493					
11	.252			.569	.398				.270			
12	.471	.259		440		.312						
13	.380		.260	327	.514	.279	.275					
14	.407		.306	535								
15	.652	345	270									
16	.401	.291					505					
17	.629		409									
18	.530		.278	377								
19	.496					516						
20	.413		.319			389		.410				
21	.574	259						309				
22	.471		.464									
23	.425			.279	330			.324	380			
24	.333	445	.506					.280				
25	.507		.527									
26	.305	375	.474	.286				320				
27	.385		.433		544							
28		525	.391	.254		.301						
29						.494	362			.420		
30	.568	302										
31	.639		429									
32	.631		460									
33	.630		499									
34	.700		276							.255		

Extraction Method: Principle component analysis

Rotation Method: Vairmax with Kaiser Normalisation

a.Rotation converged in 10 iterations

Component	Question No.	Variance contribution rate	Cumulative variance contribution rate	Weight
1	12\15\17\18\21\30\31\32\33\34	18.601	18.601	0.268735
2	2\3\4\5\6\7\8\28	12.855	31.456	0.18572
3	22\24\25\26	8.59	40.046	0.124102
4	1\11\14	6.581	46.626	0.095078
5	13\27	4.758	51.384	0.06874
6	19	4.624	56.008	0.066804
7	10\16	3.753	59.761	0.054221
8	20	3.369	63.13	0.048673
9	9\23	3.064	66.194	0.044267
10	29	3.023	69.217	0.043674

GR CONTROL

	In	itial Eigenvalue	es .	Extraction S	Sums of Square	d Loadings	Rotation Sums	of Square Loa	dings
Compon			Cumulative			Cumulative			Cumulative
ent	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	7.731	22.738	22.738	7.731	22.738	22.738	3.720	10.941	10.941
2	2.744	8.069	30.808	2.744	8.069	30.808	2.714	7.984	18.925
3	2.329	6.851	37.659	2.329	6.851	37.659	2.584	7.599	26.524
4	1.891	5.562	43.220	1.891	5.562	43.220	2.467	7.257	33.780
5	1.502	4.417	47.637	1.502	4.417	47.637	2.146	6.312	40.093
6	1.425	4.191	51.829	1.425	4.191	51.829	2.069	6.085	46.178
7	1.269	3.732	55.560	1.269	3.732	55.560	2.055	6.045	52.223
8	1.161	3.413	58.974	1.161	3.413	58.974	1.868	5.495	57.718
9	1.131	3.325	62.299	1.131	3.325	62.299	1.558	4.581	62.299
10	.976	2.871	65.170						
11	.901	2.651	67.821						
12	.867	2.551	70.371						
13	.828	2.436	72.807						
14	.764	2.248	75.055						
15	.712	2.095	77.150						
16	.698	2.052	79.201						
17	.666	1.960	81.161						
18	.627	1.843	83.004						
19	.535	1.573	84.577						
20	.509	1.496	86.073						
21	.487	1.431	87.504						
22	.475	1.396	88.900						
23	.432	1.271	90.171						

24	.422	1.243	91.414			
25	.392	1.154	92.568			
26	.382	1.123	93.690			
27	.366	1.078	94.768			
28	.324	.952	95.720			
29	.312	.916	96.637			
30	.277	.814	97.451			
31	.255	.749	98.201			
32	.227	.668	98.869			
33	.203	.598	99.466			
34	.181	.534	100.000			

Rotation Component Matrix^a

	Rotation Component Matrix ^a										
	Component										
	1	2	3	4	5	6	7	8	9		
1			.746								
2							.782				
3							.832				
4						.659	.278				
5	.483							.288			
6						.672					
7									.712		
8			.317			.528	.465				
9			.338	.287		.451					
10									.775		
11			.764								
12	.783										
13	.580		.328	.344							
14	.575			.320				.363			
15	.463	.284			.481						
16	.794										
17	.516	.272			.479						
18	.666							.312			
19				.478	.488						
20				.696		.286					
21					.749						
22	.330			.495	.301			.265			
23				.291	.353	.372					
24			.321	.711							
25	.418						.285	.392			
26			.305	.289				.589			
27								.723			
28			.635	.317							
29			.388		.568	.340					
30		.542	.278								
31		.644							.401		
32		.738									
33		.675						.259			
34		.717									

Extraction Method: Principle component analysis
Rotation Method: Vairmax with Kaiser Normalisation

Componen t	Question No.	Variance contribution rate	Cumulative variance contribution rate	Weight	
1	5\12\13\14\16\17\18\25	10.941	10.941	0.175621	
2	30\31\32\33\34	7.984	18.925	0.128156	
3	1\11\28	7.599	26.524	0.121976	
1	20/22/24	7 257	22.70	0.116407	

a. otati on conv erged

GR TEST

		Initial Finance	Total Variance			Landina
		Initial Eigenva			on Sums of Squared	-
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	6.769	19.909	19.909	6.769	19.909	19.909
2	3.032	8.918	28.827	3.032	8.918	28.827
3	2.731	8.033	36.859	2.731	8.033	36.859
4	2.066	6.078	42.937	2.066	6.078	42.937
5	1.675	4.925	47.862	1.675	4.925	47.862
6	1.530	4.501	52.364	1.530	4.501	52.364
7	1.342	3.948	56.312	1.342	3.948	56.312
8	1.180	3.472	59.784	1.180	3.472	59.784
9	1.048	3.081	62.865	1.048	3.081	62.865
10	1.019	2.997	65.862	1.019	2.997	65.862
11	.957	2.815	68.678			
12	.942	2.769	71.447			
13	.786	2.312	73.760			
14	.744	2.188	75.947			
15	.675	1.987	77.934			
16	.657	1.933	79.866			
17	.625	1.838	81.704			
18	.586	1.724	83.428			
19	.547	1.610	85.038			
20	.530	1.560	86.597			
21	.494	1.453	88.051			
22	.483	1.421	89.471			
23	.427	1.257	90.729			
24	.406	1.193	91.921			
25	.388	1.142	93.063			
26	.364	1.072	94.135			
27	.352	1.035	95.170			
28	.322	.948	96.118			
29	.271	.797	96.915			
30	.263	.774	97.689			
31	.241	.709	98.398			
32	.215	.631	99.029			
33	.185	.545	99.575			
34	.145	.425	100.000			

	Rotation Component Matrix ^a											
				1	Comp	onent						
	1	2	3	4	5	6	7	8	9	10		
1	.368	.365			336			.250				
2	.320	.601				.289	.316					
3	.393	.544				.319		350				
4		.397				.404		388	.349			
5	.274	.412				534			.346			
6	.346	.329			259	362	.264					
7	.305	.360	294				394	.338				
8	.352	.454			.313				336	.323		
9	.355	.483					.317					
10	.251	.467			.290				.286			
11	.338			.279			454	.335		258		
12	.498		490	263	.290							
13	.556	253	294	312		266						
14	.601	339	311									
15	.520	271		358				.285				
16	.571	270	345		.255							
17	.557									348		
18		251		288								
19	.458				302	.494	.250					
20	.588				352		282			.250		
21	.393									.530		
22	.557	304		.285								
23	.626			.267								
24 25	.672						280					
26	.549			.371		•						
27						293			.354			
28	.360		.259	.527								
29	.375		.254	.496	F 74							
30	.284	.280		.383	.571	272	299	358				
31	.404	.280	.602	394		273	299	358				
32	.429		.580	350								
33	.340			275	.341			.251				
34			.586		.341			.251				
34	.380		.616	250								

Rotation Method: Vairmax with Kaiser Normalisation

a. Rotation converged in 10 iterations

Component	Question No.	Variance contributio n rate	Cumulative variance contribution rate	Weight
1	1\13\14\15\16\17\18\20\22\23 \24\25\30	19.909	19.909	0.30228
2	2\3\8\9\10	8.918	28.827	0.13540
3	12\31\32\33\34	8.033	36.859	0.12197
4	27\28	6.078	42.937	0.09228
5	29	4.925	47.862	0.07478
6	5\6\19	4.501	52.364	0.06834
7	7\11	3.948	56.312	0.05994
8	4	3.472	59.784	0.05272
9	26	3.081	62.865	0.04678
10	21	2.997	65.862	0.04550

FR CONTROL

		Initial Eigenvalues			Sums of Square	Extraction Sums of Squared Loadings			Loadings
			Cumulative			Cumulative			Cumulative
Component	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	7.017	20.638	20.638	7.017	20.638	20.638	5.782	17.005	17.005
2	5.769	16.968	37.605	5.769	16.968	37.605	3.758	11.052	28.057
3	3.467	10.196	47.802	3.467	10.196	47.802	3.686	10.840	38.897
4	2.415	7.104	54.905	2.415	7.104	54.905	3.548	10.435	49.332
5	2.207	6.490	61.395	2.207	6.490	61.395	2.786	8.195	57.527
6	1.877	5.520	66.916	1.877	5.520	66.916	2.236	6.578	64.105
7	1.709	5.026	71.941	1.709	5.026	71.941	1.943	5.715	69.820
8	1.416	4.165	76.107	1.416	4.165	76.107	1.666	4.901	74.721
9	1.056	3.107	79.213	1.056	3.107	79.213	1.528	4.493	79.213
10	.992	2.916	82.130						
11	.901	2.651	84.781						
12	.832	2.447	87.228						
13	.748	2.199	89.427						
14	.624	1.834	91.261						
15	.460	1.352	92.613						
16	.414	1.218	93.831						
17	.374	1.101	94.932						
18	.341	1.004	95.935						
19	.252	.743	96.678						
20	.251	.737	97.415						
21	.194	.570	97.985						
22	.147	.433	98.418						
23	.132	.388	98.806						
24	.112	.329	99.135						
25	.075	.220	99.355						

26	.066	.194	99.549
27	.053	.155	99.704
28	.041	.122	99.826
29	.027	.081	99.907
30	.015	.044	99.951
31	.010	.029	99.980
32	.005	.016	99.996
33	.001	.004	99.999
34	.000	.001	100.000

 ${\bf Extraction\ Method\ :\ Principle\ component\ analysis}$

Rotation Component Matrix ^a

		Component										
	1	2	3	4	5	6	7	8	9			
1	.427			.369					462			
2	.861							328				
3	.875							322				
4	.854							331				
5	.582							.303				
6	.898											
7	.911											
8	.907											
9	.325					735						
10					305		.710					
11				.691								
12		.824					.303					
13		.900										
14				.801								
15			.849									
16		.821		.362								
17			.812									
18		.550		.466				488				
19			.729									
20				.543			.339	.330				
21				.882								
22							.768					
23	304		.329					.505				
24									.855			
25				.432	.496			.549				
26			.463		.592							
27					.713	375						
28					.785							
29			.337	372	.570							
30		.533		.358	.493							

31		.502			.599	.312	
32			.730				
33		.395	.462		.503		
34	.301	.328			.663		

Extraction Method: Principle component analysis

Rotation Method: Vairmax with Kaiser Normalisation

a. Rotation converged in 11 iterations

Component	Question No.	Variance contribution rate	Cumulative variance contribution rate	Weight
1	2\3\4\5\6\7\8	17.005	17.005	0.214674
2	12\13\16\18\30\31	11.052	28.057	0.139523
3	15\17\19\32	10.84	38.897	0.136846
4	11\14\20\21	10.435	49.332	0.131733
5	26\27\28\29	8.195	57.527	0.103455
6	9\31\33\34	6.578	64.105	0.083042
7	10\22	5.715	69.82	0.072147
8	23\25	4.901	74.721	0.061871
9	1\24	4.493	79.213	0.05672

FR TEST

	In	itial Eigenvalue	es —	Extraction S	Sums of Square	d Loadings	Extraction S	Sums of Square	d Loadings
Compon			Cumulative			Cumulative			Cumulative
ent	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	10.447	30.726	30.726	10.447	30.726	30.726	7.012	20.624	20.624
2	4.325	12.722	43.448	4.325	12.722	43.448	4.818	14.171	34.796
3	2.811	8.267	51.715	2.811	8.267	51.715	3.646	10.723	45.519
4	2.037	5.991	57.706	2.037	5.991	57.706	2.869	8.439	53.958
5	1.978	5.817	63.523	1.978	5.817	63.523	2.713	7.979	61.937
6	1.513	4.451	67.975	1.513	4.451	67.975	1.820	5.353	67.290
7	1.285	3.780	71.755	1.285	3.780	71.755	1.432	4.212	71.502
8	1.182	3.476	75.230	1.182	3.476	75.230	1.268	3.729	75.230
9	.959	2.821	78.052						
10	.898	2.642	80.693						
11	.784	2.306	82.999						
12	.736	2.164	85.163						
13	.657	1.931	87.095						
14	.563	1.655	88.750						
15	.469	1.380	90.130						

1.0		4 2-0	04.400
16	.432	1.270	91.400
17	.381	1.120	92.519
18	.352	1.036	93.555
19	.299	.879	94.434
20	.290	.853	95.287
21	.270	.795	96.082
22	.219	.644	96.726
23	.194	.570	97.296
24	.179	.527	97.823
25	.147	.433	98.256
26	.132	.388	98.644
27	.113	.331	98.975
28	.083	.244	99.219
29	.075	.222	99.441
30	.065	.192	99.633
31	.046	.137	99.769
32	.034	.099	99.868
33	.025	.073	99.941
34	.020	.059	100.000

Rotation Component Matrix ^a

				Com	ponent			
	1	2	3	4	5	6	7	8
1		.502		.498		.372		304
2		.781						
3		.761						
4		643					.342	
5		.755						
6		.680				.400		
7		.878						
8		.824						
9							.897	
10								.863
11				.492		.480		
12	.917							
13	.890							
14	.847							
15	.900							
16	.683		.344	.301				
17	.880							

18	.746						
19	.676			.359			
20	.844						
21				.641			
22				.802			
23	.362				.656		
24					.506		512
25				.520	.661		
26				.432	.653		
27					.726		
28					.488	.654	
29	.413	.373	.594				
30			.807	.309			
31			.792				
32			.777				
33			.855				
34						.722	

Rotation Method: Vairmax with Kaiser Normalisation

a.Rotation converged in 10 iterations

Compon ent	Question No.	Variance contribution rate	Cumulat ive variance contribu tion rate	Weight
1	12\13\14\15\25\16\17\18\19	20.624	20.624	0.274146
2	1\2\3\4\5\6\7\8	14.171	34.796	0.188369
3	29\30\31\32\33	10.723	45.519	0.142536
4	11\21\22	8.439	53.958	0.112176
5	23\24\25\26\27	7.979	61.937	0.106061
6	28\34	5.353	67.29	0.071155
7	9	4.212	71.502	0.055988
8	10	3.729	75.23	0.049568

UK CONTROL

Total Variance Explained

					ance Explained				
	In	itial Eigenvalue		Extraction S	Sums of Square	d Loadings	Rotation S	Sums of Square	Loadings
Compon			Cumulative			Cumulative			Cumulative
ent	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	10.253	30.157	30.157	10.253	30.157	30.157	4.826	14.193	14.193
2	2.820	8.295	38.452	2.820	8.295	38.452	3.371	9.916	24.108
3	2.372	6.977	45.429	2.372	6.977	45.429	3.069	9.026	33.134
4	1.804	5.305	50.734	1.804	5.305	50.734	2.854	8.393	41.526
5	1.507	4.433	55.167	1.507	4.433	55.167	2.299	6.762	48.289
6	1.407	4.138	59.305	1.407	4.138	59.305	2.276	6.695	54.984
7	1.269	3.732	63.037	1.269	3.732	63.037	2.182	6.418	61.402
8	1.146	3.370	66.407	1.146	3.370	66.407	1.702	5.004	66.407
9	.988	2.907	69.313						
10	.909	2.674	71.987						
11	.805	2.368	74.356						
12	.784	2.305	76.660						
13	.693	2.039	78.699						
14	.609	1.790	80.489						
15	.588	1.730	82.219						
16	.563	1.656	83.874						
17	.523	1.537	85.411						
18	.485	1.427	86.838						
19	.442	1.300	88.138						
20	.424	1.248	89.386						
21	.396	1.166	90.552						
22	.381	1.122	91.674						
23	.348	1.024	92.697						
24	.336	.989	93.687						
25	.296	.871	94.558						
26	.281	.825	95.383						
27	.267	.784	96.167						
28	.266	.783	96.950						
29	.232	.682	97.632						
30	.203	.597	98.229						
31	.182	.535	98.764						
32	.159	.467	99.231						
33	.147	.433	99.665						
34	.114	.335	100.000						

Extraction Method: Principle component analysis

Rotation Component Matrix ^a

	_			Component				
	1	2	3	4	5	6	7	8
16	.808							
14	.807							
12	.807							
22	.699			.308				
18	.653					.355		
25	.527							
17	.492		.316	.343		.488		
6		.745						
7		.706						
5		.681						
8		.670			.356			
10		.582						
4		.572			.497			
34			.858					
31			.796					
32			.710					
33			.652					
24				.719				
20	.436			.676				
19				.668				
17				.629		.405		
23	.355			.403		.332		
2					.823			
3					.805			
29	.322					.655		
28						.537	.521	
15	.391		.423			.502		
1					.302		.663	
27	.303						.661	
26				.375			.581	
11	.360				.377		.572	
30								.754
9		.481						.593
13	.435			.330		.357		.466

Rotation Method: Vairmax with Kaiser Normalisation

a.Rotation converged in 8 iterations

Component	Question No.	Variance contribution rate	Cumulative variance contribution rate	Weight
1	12/14/16/17/18/22/25	30.157	30.157	0.454124
2	4/5/6/7/8/10	8.295	38.452	0.124912
3	31/32/33/34	6.977	45.429	0.105064
4	19/20/23/24/21	5.305	50.734	0.079886
5	2/3	4.433	55.167	0.066755
6	15/28/29	4.138	59.305	0.062313
7	1/11/26/27	3.732	63.037	0.056199
8	9/13/30	3.37	66.407	0.050748

UK TEST

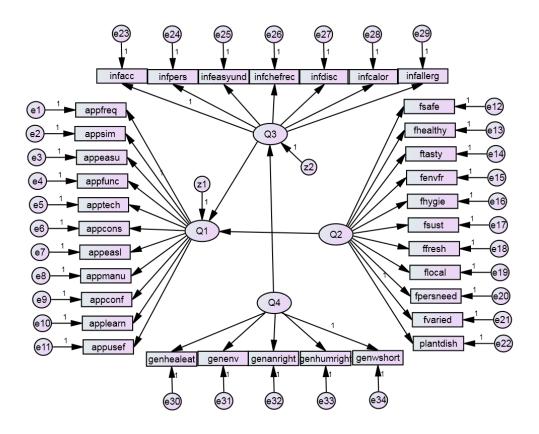
	In	itial Eigenvalue	es	Extraction S	Sums of Square	d Loadings	Rotation S	Sums of Square	Loadings
Compon			Cumulative			Cumulative			Cumulative
ent	Total	% of Variance	%	Total	% of Variance	%	Total	% of Variance	%
1	8.436	24.812	24.812	8.436	24.812	24.812	5.149	15.144	15.144
2	3.378	9.936	34.748	3.378	9.936	34.748	3.995	11.750	26.894
3	2.632	7.742	42.490	2.632	7.742	42.490	3.333	9.802	36.695
4	1.890	5.558	48.048	1.890	5.558	48.048	2.463	7.245	43.940
5	1.538	4.524	52.572	1.538	4.524	52.572	2.058	6.053	49.993
6	1.424	4.189	56.760	1.424	4.189	56.760	1.613	4.744	54.737
7	1.121	3.297	60.057	1.121	3.297	60.057	1.536	4.519	59.256
8	1.090	3.205	63.262	1.090	3.205	63.262	1.277	3.756	63.012
9	1.050	3.089	66.351	1.050	3.089	66.351	1.135	3.339	66.351
10	.996	2.929	69.280						
11	.827	2.432	71.712						
12	.819	2.409	74.121						
13	.784	2.307	76.428						
14	.761	2.239	78.667						
15	.689	2.027	80.693						
16	.659	1.937	82.630						
17	.573	1.685	84.315						
18	.528	1.554	85.870						
19	.504	1.483	87.352						
20	.467	1.374	88.726						
21	.441	1.298	90.024						
22	.421	1.239	91.264						
23	.402	1.181	92.445						
24	.388	1.141	93.586						
25	.337	.992	94.578						
26	.311	.914	95.492						
27	.254	.747	96.238						

28	.243	.716	96.954
29	.219	.645	97.599
30	.212	.623	98.222
31	.186	.546	98.768
32	.163	.480	99.249
33	.135	.398	99.647
34	.120	.353	100.000

Rotation Component Matrix ^a

					Component				
	1	2	3	4	5	6	7	8	9
14	.818								
16	.803								
22	.766								
12	.739					.308			
17	.728							.363	
18	.717	.313							
15	.643				.418			.331	
20	.574	.543							
24		.718							
29		.691							
26		.689							
28		.632			.341	.341			
21		.599							
23		.567							
25	.304	.502			.309			376	
27		.496							
2			.875						
3			.871						
7			.774						
8			.640						351
6			.473			.426			
34				.807					
33	.308			.780					
32				.777					
30					.735				
13	.411				.684				
1			.311		.492				
11						.703			
5			.405			.559	.306		

10					.741		
4		399			.557		
9			382		.498		
19	.402					.621	
31							.870


Rotation Method: Vairmax with Kaiser Normalisation

a. Rotation converged in 8 iterations

Appendix 4

Control Group Model

Initial Model

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Initial Model	6.472	0.108	0.730	0.567	0.608	0.606	0.098	3533.575
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

When the initial model is obtained, the validity of the model can be judged by the goodness of the fitted indicator, and the standard can be appropriately relaxed according to the actual situation.

However, the evaluation of this indicator is not the only evaluation of the model, and it is necessary to pay attention to the rational interpretation of the indicator.

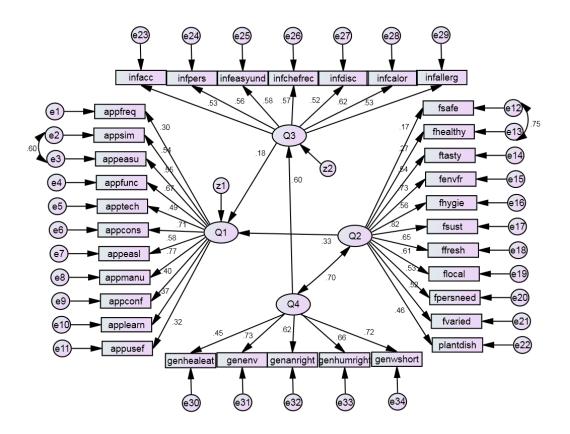
The chi-squared value divided by the degree of freedom (CMIN/DF) cannot reach the range, and both the absolute fitting index and the information fitting index meet the requirements, and the model needs to be revised.

The commonly used evaluation index is as follows:

Name of the	Name of the Index						
	χ^2 (chi-square)						
	GFI						
Absolute fit index	RMSEA						
	NFI						
Comparative fit index	CFI						
	IFI						
Information index	AIC						

The coefficients of the initial model were all significantly passed, indicating that the relationship between exogenous latent variables and endogenous latent variables is reasonable. At the same time, the measurement of latent variables for each two tables is also significantly passed. There is no need for changes in the paths.

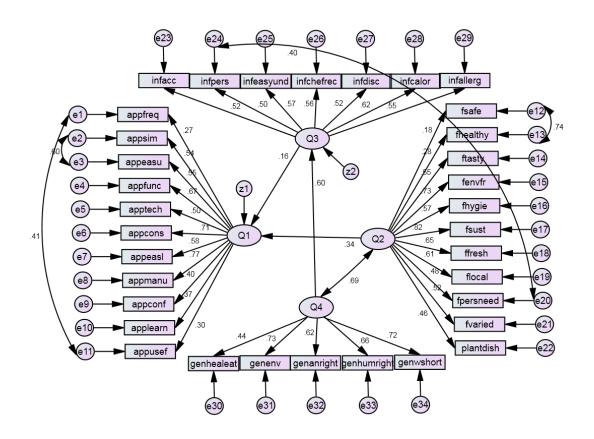
		Estimate	S. E.	C. R.	Р	Label
Q3	< Q4	. 311	. 041	7. 553	***	par_26
Q1	< Q3	. 164	. 050	3. 311	***	par_27
Q1	< Q2	. 266	. 045	5. 962	***	par_28
appsim	< Q1	1.000				
appfreq	< Q1	. 652	. 108	6.016	***	par_1
appeasu	< Q1	1.000	. 083	12.066	***	par_2
appfunc	< Q1	1.063	. 083	12.801	***	par_3
apptech	< Q1	. 992	. 104	9. 523	***	par_4


			Estimate	S. E.	C. R.	Р	Label
appcons	<	Q1	1. 185	. 094	12.606	***	par_5
appeas1	<	Q1	1.051	. 097	10.884	***	par_6
appmanu	<	Q1	1. 190	. 087	<u>13. 700</u>	***	par_7
appconf	<	Q1	. 935	. 118	7.943	***	par_8
applearn	<	Q1	. 989	. 132	7. 489	***	par_9
appusef	<	Q1	. 605	. 092	6. 573	***	par_10
fvaried	<	Q2	1.000				
fpersneed	<	Q2	. 965	. 103	9.403	***	par_11
flocal	<	Q2	1.091	. 111	9.790	***	par_12
ffresh	<	Q2	. 907	. 084	10.772	***	par_13
fsust	<	Q2	1. 288	. 112	11.555	***	par_14
fhygie	<	Q2	. 677	. 067	10.053	***	par_15
fenvfr	<	Q2	1. 191	. 110	10.801	***	par_16
ftasty	<	Q2	. 756	. 076	9.905	***	par_17
fhealthy	<	Q2	. 712	. 110	6. 483	***	par_18
fsafe	<	Q2	. 510	. 099	5. 132	***	par_19
infacc	<	Q3	1.000				
infdisc	<	Q3	1.052	. 117	8.966	***	par_20
infallerg	<	Q3	1.102	. 123	8.992	***	par_21
genhealeat	<	Q4	. 528	. 059	8.888	***	par_22
genenv	<	Q4	1.019	. 065	15.649	***	par_23
genanright	<	Q4	. 921	. 069	13. 393	***	par_24
genhumright	<	Q4	. 820	. 058	14. 261	***	par_25
genwshort	<	Q4	1.000				
infeasyund	<	Q3	. 923	. 099	9. 348	***	par_29

		Estimate	S. E.	C. R.	Р	Label
infpers	< Q3	1. 170	. 128	9. 162	***	par_30
infcalor	< Q3	1.516	. 153	9. 901	***	par_31
plantdish	< Q2	. 788	. 090	8.752	***	par_32
infchefrec	< Q3	1. 245	. 132	9.447	***	par_33

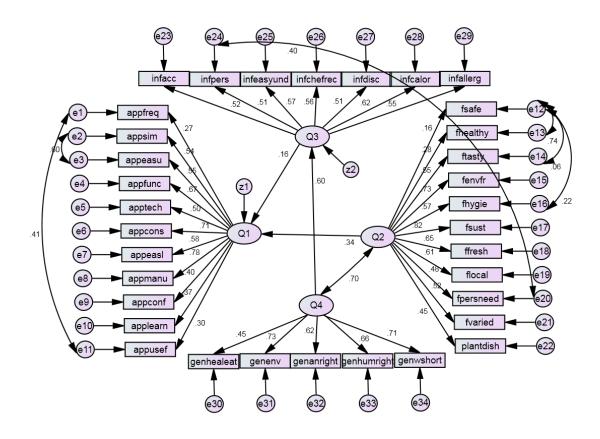
When using the correction index to correct the model, it is generally estimated from the maximum value, which can effectively reduce the chi-square value of the model. At the same time, we must consider the actual situation and theoretical basis to analyze the considerations

There might be correlations between Q2, Q4 (i.e. personal importance given to specific features of the food provided by the canteen and overall concerns on food issues). Similarly, there are correlations between e12 and e13 and between e2 and e3. Considering this issue, 3 double arrows below are added to the model.


			М. І.	Par Change
Q2	<>	Q4	163. 472	. 200
e13	<>	e12	313.036	<u>. 780</u>
e2	<>	еЗ	189. 524	<u>. 154</u>

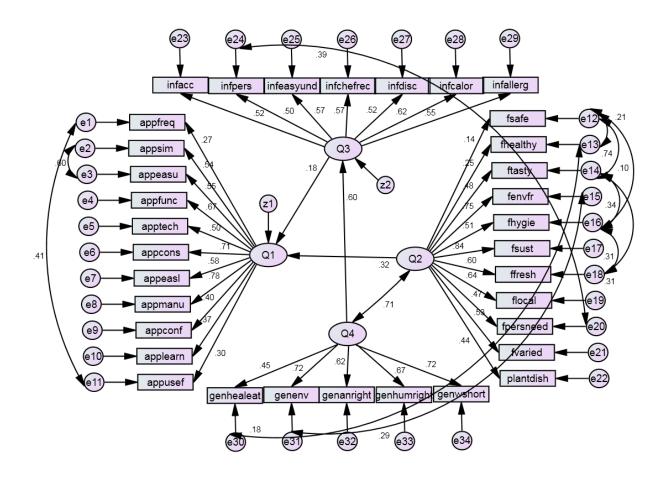
	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 2	4.314	0.067	0.780	0.690	0.726	0.737	0.082	2656.057
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Compared with the initial model, each indicator has improved. 2 double arrows were added due to correlations between e20 and e24 and between e1 and e11. Adjustment continues.


			М. І.	Par Change
e20	<>	e24	72. 628	. 211
е1	<>	e11	91.418	. 255

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 3	3.483	0.067	0.801	0.723	0.751	0.771	0.078	2478.904
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
model								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
model								better

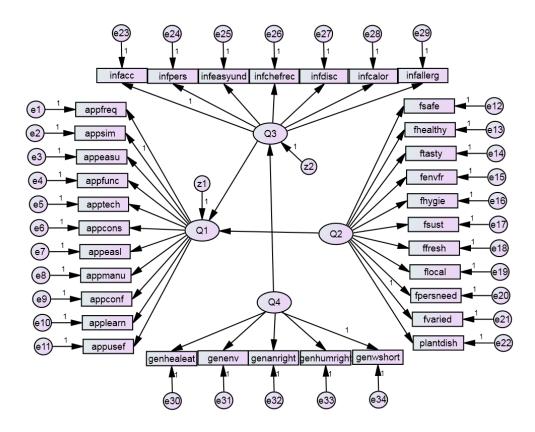
Paths added due to correlations.


	М. І.	Par Change
e16 <> e12	61. 402	. 106
e16 <> e14	54. 229	. 081

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 4	3.365	0.067	0.801	0.732	0.782	0.781	0.077	2412.630
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Paths added due to correlations.

		М. І.	Par Change
e13 <>	e30	43. 910	. 143
e15 <>	e31	42.049	. 113
e16 <>	e14	48. 478	. 072
e18 <>	e14	43. 153	. 079
e18 <>	e16	43. 819	. 065



	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Final model	2.689	0.066	0.847	0.761	0.801	0.821	0.072	2197.581
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

All the index fitted.

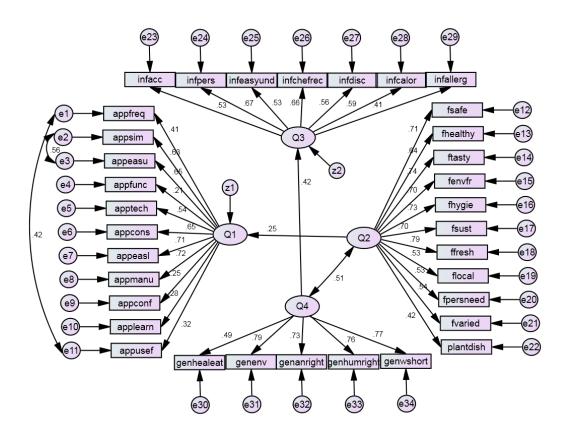
Test group model

Initial Model

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Initial model	6.472	0.108	0.730	0.567	0.608	0.606	0.098	3533.575
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Considerate deleting the path from Q3 to Q1 due to high p value in t-test. (marked yellow)

			Estimate	S. E.	C. R.	Р	Label
Q3	< (Q4	. 260	. 044	5. 908	***	par_26
Q1	< (Q3	. 055	. 070	. 788	<mark>. 431</mark>	par_27
Q1	< (Q2	. 264	. 065	4.082	***	par_28
appsim	< (Q1	1.000				
appfreq	< (Q1	. 739	. 091	8. 154	***	par_1
appeasu	< (Q1	. 988	. 064	15. 403	***	par_2


			Estimate	S. E.	C. R.	P	Label
appfunc	<	Q1	. 448	. 127	3. 538	***	par_3
apptech	<	Q1	. 748	. 074	10.089	***	par_4
appcons	<	Q1	. 784	. 065	12. 110	***	par_5
appeas1	<	Q1	. 886	. 064	13. 740	***	par_6
appmanu	<	Q1	. 952	. 069	13.854	***	par_7
appconf	<	Q1	. 418	. 097	4. 331	***	par_8
applearn	<	Q1	. 426	. 082	5. 184	***	par_9
appusef	<	Q1	. 475	. 076	6. 228	***	par_10
fvaried	<	Q2	1.000				
fpersneed	<	Q2	. 913	. 103	8.899	***	par_11
flocal	<	Q2	1.032	. 118	8. 766	***	par_12
ffresh	<	Q2	1. 173	. 103	11.412	***	par_13
fsust	<	Q2	1. 163	. 110	10. 594	***	par_14
fhygie	<	Q2	1.032	. 094	11.002	***	par_15
fenvfr	<	Q2	1. 212	. 116	10. 487	***	par_16
ftasty	<	Q2	1. 166	. 105	11. 123	***	par_17
fhealthy	<	Q2	1.072	. 106	10. 126	***	par_18
fsafe	<	Q2	1.014	. 093	10.870	***	par_19
infacc	<	Q3	1.000				
infdisc	<	Q3	1. 118	. 132	8. 462	***	par_20
infallerg	<	Q3	. 834	. 122	6.833	***	par_21
genhealeat	<	Q4	. 660	. 068	9. 745	***	par_22
genenv	<	Q4	1.088	. 065	16.611	***	par_23
genanright	<	Q4	1. 124	. 073	15. 418	***	par_24
genhumright	<	Q4	. 927	. 059	15. 687	***	par_25

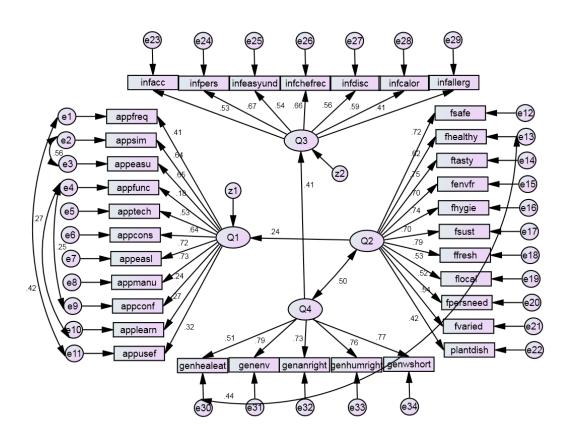
		Estimate	S. E.	C. R.	Р	Label
genwshort	< Q4	1.000				
infeasyund	< Q3	. 876	. 107	8. 221	***	par_29
infpers	< Q3	1.271	. 136	9.320	***	par_30
infcalor	< Q3	1.392	. 160	8.694	***	par_31
plantdish	< Q2	. 712	. 095	7. 485	***	par_32
infchefrec	< Q3	1.493	. 161	9. 297	***	par_33

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 2	4.013	0.096	0.768	0.676	0.735	0.733	0.081	2244.611
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Paths added due to correlations.

		M. I.	Par Change
Q2 <>	Q4	87. 522	. 148
e1 <>	e11	83.640	. 306
e2 <>	еЗ	100. 580	. 121

All the index fitted.

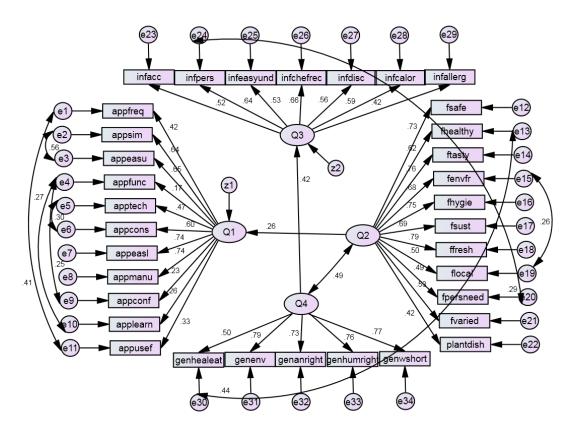

		Estimate	S. E.	C. R.	Р	Label
Q3	< Q4	. 283	. 045	6. 325	***	par_26
Q1	< Q2	. 236	. 056	4. 229	***	par_27
appsim	< Q1	1.000				
appfreq	< Q1	. 885	. 117	7. 551	***	par_1
appeasu	< Q1	. 992	. 059	16. 927	***	par_2
appfunc	< Q1	. 624	. 156	4.001	***	par_3
apptech	< Q1	. 944	. 100	9.457	***	par_4
appcons	< Q1	1.000	. 091	10. 953	***	par_5
appeas1	< Q1	1. 100	. 094	11.717	***	par_6
appmanu	< Q1	1. 192	. 101	11.836	***	par_7
appconf	< Q1	. 572	. 120	4. 778	***	par_8

			Estimate	S. E.	C. R.	Р	Label
applearn	<	Q1	. 545	. 103	5. 310	***	par_9
appusef	<	Q1	. 583	. 096	<u>6. 047</u>	***	par_10
fvaried	<	Q2	1.000				
fpersneed	<	Q2	. 901	. 100	9.025	***	par_11
flocal	<	Q2	1.046	. 115	9.064	***	par_12
ffresh	<	Q2	1. 146	. 099	11. 593	***	par_13
fsust	<	Q2	1. 160	. 107	10.861	***	par_14
fhygie	<	Q2	1.007	. 090	11. 151	***	par_15
fenvfr	<	Q2	1. 222	. 113	10.817	***	par_16
ftasty	<	Q2	1. 129	. 100	11. 234	***	par_17
fhealthy	<	Q2	1.053	. 103	10. 274	***	par_18
fsafe	<	Q2	. 983	. 090	10.972	***	par_19
infacc	<	Q3	1.000				
infdisc	<	Q3	1. 112	. 132	8. 445	***	par_20
infallerg	<	Q3	. 834	. 122	6.840	***	par_21
genhealeat	<	Q4	. 677	. 067	10.066	***	par_22
genenv	<	Q4	1.077	. 065	16.636	***	par_23
genanright	<	Q4	1. 105	. 072	15. 268	***	par_24
genhumright	<	Q4	. 930	. 059	15.878	***	par_25
genwshort	<	Q4	1.000				
infeasyund	<	Q3	. 872	. 106	8. 210	***	par_28
infpers	<	Q3	1. 279	. 137	9. 364	***	par_29
infcalor	<	Q3	1. 396	. 160	8.720	***	par_30
plantdish	<	Q2	. 703	. 093	7. 576	***	par_31
infchefrec	<	Q3	1. 489	. 160	9.302	***	par_32

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 2	3.428	0.069	0.794	0.724	0.787	0.786	0.073	1935.164
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Paths added due to correlations.

			М. І.	Par Change
e13	<>	e30	78. 240	. 201
e4	<>	e10	45. 545	. 361
e4	<>	e9	41. 932	. 409



	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Model 3	3.131	0.066	0.811	0.749	0.815	0.813	0.068	1776.994
Theoretical	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the
range								better
Acceptable	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the
range								better

Paths added due to correlations.

	М. І.	Par Change
e19 <> e15	24. 257	. 119
e20 <> e24	25. 912	. 113
e5 <> e6	31. 270	. 107

After the correction, the model basically meets the requirements, and the added correlation path can also be well explained. The following final model is obtained.

	CMIN/DE	RMR	GFI	NFI	IFI	CFI	RMSEA	AIC
Final model	2.775	0.066	0.843	0.783	0.849	0.848	0.066	1693.271
Theoretical model	<2	<0.05	>0.9	>0.9	>0.9	>0.9	<0.05	The smaller the better
Acceptable model	<3	<0.08	>0.8	>0.8	>0.8	>0.8	<0.08	The smaller the better